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SUMMARY

In the present paper, a numerical method for the computation of time-harmonic flows, using the time-
linearized compressible Reynolds-averaged Navier–Stokes equations is developed and validated. The
method is based on the linearization of the discretized nonlinear equations. The convective fluxes are
discretized using an O(�x3H) MUSCL scheme with van Leer flux-vector-splitting. Unsteady perturbations of
the turbulent stresses are linearized using a frozen-turbulence-Reynolds-number hypothesis, to approximate
eddy-viscosity perturbations. The resulting linear system is solved using a pseudo-time-marching implicit
ADI-AF (alternating-directions-implicit approximate-factorization) procedure with local pseudo-time-steps,
corresponding to a matrix-successive-underrelaxation procedure. The stability issues associated with the
pseudo-time-marching solution of the time-linearized Navier–Stokes equations are discussed. Comparison
of computations with measurements and with time-nonlinear computations for 3-D shock-wave oscillation
in a square duct, for various back-pressure fluctuation frequencies (180, 80, 20 and 10Hz), assesses the
shock-capturing capability of the time-linearized scheme. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Developments in the prediction of unsteady turbomachinery flows for aeroelastic applications [1]
(flutter or forced response), in the last 10 years, have abandoned potential models, and concen-
trated on 3-D Euler and Navier–Stokes methods [1–16]. Assuming that the vibration amplitudes
are small, and that, as a consequence, the unsteady flow can be considered as a small perturbation
superimposed on an underlying steady flow, several researchers have contributed to the develop-
ment of time-linearized time-harmonic methods [17–36] (Table I), which offer substantial gains in
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computing time, compared to nonlinear methods. This is particularly true for the time-linearized
time-harmonic frequency-domain methods, as shown, e.g. by Sreenivas and Witfield [25] whose
2-D time-linearized Euler computations in vibrating cascades were 28 times faster, in the frequency
domain, compared to an equivalent time-linearized formulation in the time-domain. The develop-
ment of accurate shock-capturing schemes combined with the modelling of viscous effects, for the
time-linearized equations, is necessary to predict transonic 3-D flows around complex geometries.
Additionally, the evaluation of results of time-linearized methods by comparison with results of
time-nonlinear methods, and with experimental data, is necessary for assessing the validity and
range of applicability of the time-linearized approach.

As early as 1976, Ni and Sisto [17] (Table I) were the first to use the time-linearized Euler
equations for the computation of inviscid unsteady flow in flat-plate-cascades at 0-incidence.
Hall and Crawley [18] developed a 2-D time-linearized time-harmonic Euler solver based on a
nonconservative formulation [50, 51]. In that work [18], transonic flows were addressed by shock-
fitting procedures [52, 53], an obvious drawback for the generalization of such methods to 3-D
flows over complex geometries. This restriction was removed by Lindquist and Giles [22], who
were the first to introduce shock-capturing methods for the time-linearized time-harmonic Euler
equations, and to numerically demonstrate that shock-capturing methods predict with acceptable
accuracy global aerodynamic effects. These three major contributions [17, 18, 22] stimulated many
recent developments on time-linearized time-harmonic methods [19–21, 23–35]. There are two
alternatives for the numerical discretization of the time-linearized time-harmonic equations: (1)
discretize the nonlinear equations and then linearize the resulting discrete equations, and (2)
linearize the equations and then construct a discretization scheme for the linearized flow equations.
Hall et al. [21] have shown that the two approaches give equivalent results, ensuring the linearized
conservation property [21], provided a conservative formulation [50, 51] of the equations is used
(this proof was made for the Lax–Wendroff scheme [43]).

Most of these methods [17–35] use a pseudo-time-marching iterative procedure to solve the
linearized equations. Nonetheless, a pseudo-time-marching approach, for the linearized equations,
may develop numerical instabilities [34, 35, 54], depending on the eigenmodes of the underlying
steady flow. Non-pseudo-time-marching approaches are therefore more robust [36, 55].

An original alternative to the time-linearized time-harmonic methods (hereafter LH) was pro-
posed by Ning and He [23, 24] (Table I), where the flow is represented as Fourier-series trun-
cated after the 1-harmonic, so that the time-averaged flow (including the nonlinear effects of the
1-harmonic) is computed simultaneously with the 1-harmonic unsteady perturbation. This time-
nonlinear time-harmonic method (hereafter NH) is able to account for nonlinear effects, as do
time-marching nonlinear methods, but maintains the computational efficiency of the frequency-
domain time-linearized methods. Hall et al. [33] maintain higher harmonics in the Fourier-series,
using the harmonic balance technique (hereafter HB), which was used to model both nonlinear
and linear disturbances in turbomachinery cascades [33]. The resulting coupled partial differen-
tial equations for the unknown Fourier-coefficients are solved, in the frequency-domain, using a
conventional pseudo-time-marching approach [33].

Following the initial choice of an O(�x2H) centred scheme [43] by Lindquist and Giles [22]
(who also tested an O[�xH] van Leer scheme [56] which was obviously too dissipative), many
authors [19–21, 23, 24, 29–35] used centred schemes with various artificial dissipation strategies.
More recently several authors [25–28, 32, 57–59] developed upwind solvers, based on the lineariza-
tion of either Roe [40] flux-difference splitting [25–28, 32] or van Leer [56] flux-vector-splitting
[57–59], thus avoiding adjustable artificial dissipation coefficients. All of these schemes use the
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MUSCL [60] approach to achieve O(�x2H) or O(�x3H) accuracy (�xH is used to denote accuracy
in an homogeneous �xH = const grid).

For turbulent flows, in a Reynolds-averaged Navier–Stokes (RANS) framework, the
linearization of turbulent stresses is an important issue. Several authors [29, 31, 34, 35, 42] solve a
linearized form of the 1-equation Spalart–Allmaras [49] �T model, to estimate the unsteady pertur-
bation of eddy-viscosity. To the authors’ knowledge, only Holmes et al. [61] have addressed the
linearization of a 2-equation k − �T model [62]. In the present work, we are mainly interested
in the numerical scheme, and we have addressed the linearization of turbulent stresses by assum-
ing a Boussinesq hypothesis [63] for the unsteady perturbation of the turbulent stresses, and by
neglecting the unsteady perturbations of the turbulence-Reynolds-number (frozen-turbulent-scales
approximation, hereafter FTS). Notice that Chen et al. [30] have used a frozen eddy-viscosity
approximation (hereafter FT) in their calculations of rotor/stator interaction. In a related design-
oriented work (Navier–Stokes equations linearized with respect to geometry perturbations), Kim
et al. [64] have studied the effect of linearizing various 2-equation models (compared to using
frozen-turbulence approximations), and have concluded that ‘the usual assumption of constant
turbulent eddy-viscosity may lead to inaccurate results, particularly in turbulent flows involving
strong shocks.’ The linearization of the 7-equation Reynolds-stress closure [65] used in the present
work for the steady computations [66, 67] is the subject of ongoing research.

The purpose of this work is to develop and evaluate an O(�x3H) upwind numerical scheme based
on the van Leer flux-splitting formulation, with shock-capturing capability, for the time-linearized
time-harmonic 3-D Navier–Stokes equations. The basic strategy is the linearization of schemes
used for the time-nonlinear equations, as was done by Lindquist and Giles [22]. Comparison with
experiment and time-nonlinear results are presented in the case of a transonic Laval nozzle with a
3-D shock-wave oscillation resulting from a fluctuating back-pressure, for frequencies in the range
of [10, 180]Hz.

2. TIME-LINEARIZED NAVIER–STOKES METHODOLOGY

2.1. Nonlinear flow equations and solver

The flow is modelled by the compressible Favre–Reynolds-averaged 3-D Navier–Stokes equa-
tions [68], coupled to the six transport equations for the Reynolds-stresses and to the transport
equation for the turbulence-kinetic-energy modified-dissipation-rate [68], written symbolically

�w

�t
+ �F�

�x�

+ S ≡ �w

�t
+ �Fx

�x
+ �Fy

�y
+ �Fz

�z
+ S = 0 (1)

where

w = [wT
MF, w

T
RSM]T

= [[�̄, �̄ũ, �̄ṽ, �̄w̃, �̄h̆t− p̄], [�̄˜u′′u′′, �̄ũ′′v′′, �̄ṽ′′v′′, �̄ ˜v′′w′′, �̄˜w′′w′′, �̄ ˜w′′u′′, �̄�∗]]T∈R12 (2)

is the vector of unknowns, wMF ∈ R5 is the vector of mean-flow-variables, wRSM ∈ R7 is the
vector of turbulence-variables (Reynolds-stresses and dissipation-rate), F� ∈ R12 (Fx , Fy , Fz) are

the combined convective (FC
� ) and diffusive (viscous; FV

� ) fluxes (F� = FC
� + FV

� ), S ∈ R12 are
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the source-terms, t is the time, x� (x , y, z) are the Cartesian space coordinates, u� (u, v, w)
are the velocity components, � is the density, p is the pressure, h̆t = h̃ + 1

2 ũi ũi is the total
enthalpy of the mean-flow, h is the specific enthalpy, and �∗ is the modified [69] dissipation-rate
(�∗ = � − 2�̆[grad(√k)]2), � is the dissipation-rate, k= 1

2
˜u′′
i u

′′
i is the turbulence-kinetic-energy, and

� is the kinematic viscosity. The symbol (·̃) indicates Favre-averaging, (·̄) nonweighted-averaging,
(·′′) Favre-fluctuations, and (·′) nonweighted-fluctuations. The symbol (·̆) is used to denote a
function of average quantities which is neither a Favre-average nor a nonweighted average. The
exact expressions of the fluxes F� and of the source-terms S depend on the particular model used,
and are given in the corresponding references [65, 66, 68, 70]. Notice that all of the source-terms for
the mean-flow-equations are 0, except for the mean-flow-energy equation, for which the source-term
−Sh̆t is the sum of turbulence-related quantities [68, 70] which appear in the turbulence-kinetic-
energy equation (−Sh̆t is generally small even for supersonic [M<5] wall-bounded flows).

These equations are solved using an O(�x3H) upwind-biased scheme (with van Leer [56] flux-
vector-splitting and the Anderson et al. [48] implementation of the van Albada [71] limiter), with
implicit O(�t) LDTS (local-dual-time-stepping) subiterations [66], augmented with mean-flow-
multigrid acceleration [67]. For unsteady flows, an O(�t2) implicit DTS (dual-time-stepping)
methodology is used, with subiterations, whose number is determined dynamically, based on an
increment-convergence-tolerance criterion [72].
2.2. Basic linearization strategy

The time-linearized time-harmonic equations are obtained by considering small unsteady time-
harmonic perturbations 1w(x, y, z, t) of the conservative variables w, around an underlying steady
flow 0w(x, y, z):

w(x, y, z, t) = 0w(x, y, z) + 1w(x, y, z, t) = 0w(x, y, z) + �[1ŵ(x, y, z) ei2� f t ] (3)

where 1ŵ(x, y, z) ∈ C12 are the harmonics of the conservative variables and f is the frequency.
Any quantity Q = Q(w, gradw), appearing in the nonlinear differential or discretized equations,
is linearized as

1 Q̂(0ŵ, grad 0w; 1ŵ, grad 1ŵ)

=
[
�Q
�w

(0w, grad 0w)

]
1ŵ +

[
�Q

� gradw
(0w, grad 0w)

]
grad 1ŵ (4)

2.3. Finite-volume discretization

The numerical scheme for the time-linearized equations is obtained directly by linearization of
the corresponding scheme for the time-nonlinear equations (Equation (1)) [21, 22, 28]. The non-
linear scheme used in the present work, is a finite-volume MUSCL [60] scheme, with van Leer
flux-vector-splitting [56] and the Anderson et al. [48] implementation of the van Albada [71]
limiter, which is described in detail in Chassaing et al. [66]. Assuming that the equations
are discretized on a time-independent structured grid, and noting (�, �, �) the grid-directions
(i, j, k), (�Si±1/2, j,k,

�Si, j±1/2,k,
�Si, j,k±1/2) the cell-face areas of the staggered-grid-cell around

the point (i, j, k), and ([�nx , �ny, �nz]Ti±1/2, j,k , [�nx , �ny, �nz]Ti, j±1/2,k , [�nx , �ny, �nz]Ti, j,k±1/2)
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284 J.-C. CHASSAING AND G. A. GEROLYMOS

the corresponding unit-normals (positive in the positive grid direction), the discrete scheme for the
time-linearized time-harmonic equations, obtained by linearization of the corresponding nonlinear
discrete scheme (Equation (6) of Chassaing et al. [66]), reads

i2� f 1ŵMFi, j,k + 1

Vi, j,k

⎡⎢⎢⎢⎣
+�Si+1/2, j,k

�[1 F̂N
MF]i+1/2, j,k − �Si−1/2, j,k

�[1 F̂N
MF]i−1/2, j,k

+�Si, j+1/2,k
�[1 F̂N

MF]i, j+1/2,k − �Si, j−1/2,k
�[1 F̂N

MF]i, j−1/2,k

+ �Si, j,k+1/2
�[1 F̂N

MF]i, j,k+1/2 − �Si, j,k−1/2
�[1 F̂N

MF]i, j,k−1/2

⎤⎥⎥⎥⎦
+[1 ŜMF]i, j,k ≡ i2� f 1ŵMFi, j,k + 1L̂MFi, j,k

∼= 0 (5)

where Vi, j,k is the control-volume. The perturbation of numerical flux 1 F̂
N
MF is given by

�[1 F̂N
MF]i±1/2, j,k =

[
�
(
1 F̂

CN
MF

)
+ 1 F̂

VN
MF�

�n�

]
i±1/2, j,k

(6)

where FCN
MF is the convective numerical flux [66], and FCV

MF is the viscous numerical flux [66].
2.4. Linearization and approximation of the viscous fluxes and of the source-term

The numerical viscous fluxes at the staggered-grid cell-faces are given by

[1 F̂VN
MF�

]i±1/2, j,k = 1
2 ([1 F̂

V
MF�

]i, j,k + [1 F̂V
MF�

]i±1, j,k) (7)

resulting in a centred O(�x2H) scheme for the viscous terms (the derivatives involved in the

evaluation of [1 F̂V
MF�

]i, j,k are computed using an O(�x2H) scheme [73]). To uncouple the time-
linearized time-harmonic mean-flow equations (Equation (5)) from the equations for the unsteady
perturbations of the Reynolds-stresses (and thus reduce the number of equations from 12 to only 5),
the unsteady perturbations of the Reynolds-stresses and of the turbulent-heat-flux must be modelled
using only steady quantities and mean-flow-perturbations. Details on the approximations used for
the viscous terms, and on the frozen-turbulence-scales assumption used to evaluate the perturbations
of the Reynolds-stresses and of the turbulent-heat-fluxes are given in Appendix A:

[1 F̂V
MF�

] ∼= [1 F̂V
MF�

](0ŵ, grad 0w; 1ŵMF, grad
1ŵMF) [1 ŜMF] ∼= 0 (8)

where 1 F̂
V
MF�

is given in Appendix A.

2.5. Linearization of the convective fluxes

The unsteady perturbations of the convective numerical fluxes (Equations (5) and (6)), on a time-
independent grid, can be written as

1 F̂
CN
MF(

0w±
MF,

1ŵ
±
MF; nx , ny, nz) =

[
�F+

MF

�w−
MF

(0w−
MF; nx , ny, nz)

]
1ŵ

−
MF

+
[

�F−
MF

�w+
MF

(0w+
MF; nx , ny, nz)

]
1ŵ

+
MF (9)
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where wL
MF ≡w−

MF and wR
MF ≡ w+

MF are the MUSCL-reconstructed conservative-variables at the in-
terface [60], F±

MF are the van Leer split-fluxes [48, 56, 66], and the corresponding flux
Jacobians �F±

MF/�w∓
MF are computed by straightforward differentiation (the exact expressions

can be found, e.g. in Vallet [74]). Notice, however, that the expression of the van Leer fluxes
(Equations (7)–(9) in Chassaing et al. [66]) depends on the normal-to-the-cell-interface Mach-
number M±

n = u±
i ni (a

±)−1, computed with the appropriate MUSCL variables (different
expressions depending on whether (±M±

n <−1, | ± M±
n |<1, ±M±

n >+1). This dependence on
M±

n is not differentiated when computing the flux-Jacobians �F±
MF/�w∓

MF (Equation (9)).
The MUSCL-variables, for the time-nonlinear O(�x3H) scheme used in the present work, are

obtained by the MUSCL interpolation function [66]:
ŵ

±
MF =w±

MF([wMF]−1, [wMF]0, [wMF]+1; sMF) (10)

where the indices −1, 0, and +1 denote the points in the stencil and sMF ∈ R5 is the slope-
limiter [56] computed on the same stencil. When computing the unsteady perturbations of the
MUSCL variables, the limiters are not differentiated, a practice also followed by other au-
thors [28, 57]. The corresponding MUSCL variables for the Fourier coefficients of the perturbations
of the variables are given by

1ŵ
±
MF =w±

MF([1ŵMF]−1, [1ŵMF]0, [1ŵMF]+1; 0sMF) (11)

where 0sMF is computed on the same stencil, but using the steady flow variables 0w. In the
present work the Anderson et al. [48] implementation of the van Albada et al. [71] limiter is used
(cf. Appendix B).

This approach of using the underlying steady-flow to compute the limiters for the MUSCL
reconstruction works quite well, and has been used by many authors [25–28, 32, 57–59]. Nonethe-
less, it results in a reconstruction which is linear in 1ŵMF (Equation (11)). As discussed by van
Leer [75], by virtue of the famous Godunov theorem, a linear MUSCL discretization scheme of
O(�xr ) with r>1 is not monotonicity preserving. The alternative approach of constructing limiters
based on 1ŵMF only (so as to construct a nonlinear MUSCL reconstruction) was also tested, and
gave results very similar with the previous approach.

2.6. Linear system solution

Assembling the time-linearized equations (Equations (5)–(11)) results in the linear system

i2� f 1ŵMF + 1L̂MF(
0w, 1ŵMF) ≡ i2� f 1ŵMF + AMF(

0w)1ŵMF = 0 (12)

where 0w=[0w1,1,1,
0w1,1,2, . . . ,

0wNi ,N j ,Nk
]T ∈ R12×Ni×N j×Nk is the global vector of the unper-

turbed conservative variables, 1ŵMF=[1ŵMF1,1,1,
1ŵMF1,1,2, . . . ,

1ŵMFNi ,N j ,Nk
]T∈C5×Ni×N j×Nk is

the global vector of unknowns and 1L̂MF=[1L̂MF1,1,1,
1L̂MF1,1,2, . . . ,

1L̂MFNi,N j,Nk ]T∈C5×Ni×N j×Nk

is the global linear space-operator (Equation (5)), and AMF(
0w)∈R(5×Ni×N j×Nk)×(5×Ni×N j×Nk ) is

the matrix associated with 1L̂MF (1L̂MF ≡AMF
1ŵMF). As originally suggested by Ni and Sisto [17],

the time-linearized time-harmonic equations (Equation (12)) are marched in a pseudo-time t∗ until
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convergence of the unknowns 1ŵMF:

d1ŵMF

dt∗
+ i2� f 1ŵMF + AMF(

0w)1ŵMF = 0 (13)

Using an O(�t∗) backward-Euler [76] scheme for the pseudo-time integration yields, at iteration
n, the following implicit formulation:

{I + �t∗ [i2� f I + AJ
MF(

0w)]}(n)[� 1ŵMF] ∼= −�t∗ [i2� f I + AMF(
0w)](n)[1ŵMF] (14)

where (n)[1ŵMF] denotes the global vector of unknowns at iteration n, (n)[� 1ŵMF] = (n+1)[1ŵMF]−
(n)[1ŵMF] is the increment between iterations n and n + 1, I∈ R(5×Ni×N j×Nk)×(5×Ni×N j×Nk) is
the identity matrix, �t∗ = diag[(�t∗1,1,1)I 5, (�t∗1,1,2)I 5, . . . , (�t∗Ni ,N j ,Nk

)I
5
] is the diagonal matrix

associated with the local pseudo-time-steps �t∗i, j,k , I 5 is the 5× 5 identity matrix, and the matrix

AJ
MF is an appropriate approximation of the matrix AMF chosen to reduce computational time.

Note that defining �t∗∗
i, j,k =�t∗i, j,k/(1+ i2� f �t∗i, j,k) (�t∗∗

i, j,k ∈ C), with associated diagonal matrix
�t∗∗, Equation (14) can be simplified as

{I + �t∗∗ AJ
MF(

0w)}(n)[� 1ŵMF] ∼= −�t∗∗ [i2� f I + AMF(
0w)](n)[1ŵMF] (15)

Following work on the solution of the nonlinear Navier–Stokes equations [67, 66], the iteration
matrix AJ

MF used in the present work is obtained as the Jacobian of an approximate space operator
1L̂

J
MF, which uses O(�xH) discretization for the convective fluxes and an ad hoc spectral radius

approximation for the viscous terms [66, 67, 74]. The resulting matrix (I + �t∗∗ � 1L̂
J
MF/�

1ŵMF)

is further approximately factored [48, 77] (I + �t∗∗AJ
MF)

∼= (I + �t∗∗�AJ
MF)(I + �t∗∗�AJ

MF)(I +
�t∗∗�AJ

MF) to obtain an alternating directions implicit (ADI) solution [48, 77, 78] of the linear
system (Equation (15))

(I + �t∗∗�AJ
MF)

(n,�)[�1ŵMF] = −�t∗∗[i2� f I + AMF(
0w)](n)[1ŵMF]

(I + �t∗∗�AJ
MF)

(n,�)[� 1ŵMF] = (n,�)[� 1ŵMF]
(I + �t∗∗�AJ

MF)
(n,�)[� 1ŵMF] = (n,�)[� 1ŵMF]

(n)[� 1ŵMF] = (n,�)[� 1ŵMF]
(n+1)[1ŵMF] = B{(n)[1ŵMF] + (n)[� 1ŵMF]}

(16)

where the operator B corresponds to the explicit application of boundary-conditions
(cf. Appendix C). The real matrices �AJ

MF,
�AJ

MF, and
�AJ

MF, are given in Vallet [74]. They include
the implicit application of boundary-conditions following the method of Chakravarthy [74, 79].
The three successive spacewise linear systems are solved using banded-LU factorization [80] (with
appropriate rearrangement of the storage order of the matrices and increment vectors [48, 78]) with
corresponding bandwidth of (1 + 2× 9). The local pseudo-time-steps �t∗i, j,k are computed using
the same formula as for nonlinear computations (cf. Equation (28) in Chassaing et al. [66]; in the
present computations CFL=VNN= 20 was used).
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Although the matrices �AJ
MF,

�AJ
MF, and

�AJ
MF, are real,�t

∗∗∈C, so that the LU-factorization [80]
is concerned with a complex matrix (more real operations than for a real matrix of the same size).
In many applications, such as those considered in the present paper, the following condition holds:

|i��t∗| 	 1 ⇒ �t∗∗ ∼= �t∗ ∈ R (17)

In these cases, �t∗∗ ∈ C is replaced by �t∗ ∈ R in Equations (15) and (16), so that the
LU-factorization [80] is performed for real matrices, and only the back-substitution [80] involves
complex numbers, resulting in an important speed-up (back-substitution is quite inexpensive com-
pared to the LU-factorization [80]).

In the present numerical implementation, the time-linearized space-operator 1L̂MF(
0w, 1ŵMF)

and the Jacobian matrices �A, �A, �A, are evaluated at each iteration (in the same way as for nonlin-
ear methods). An alternative to this, which was initially tested, is to compute and store in computer
memory the coefficients of the matrix AMF, and then use them to compute 1L̂MF ≡ AMF

1ŵMF.
Although this procedure reduces computing time by 15%, it requires an order-of-magnitude larger
computer memory [59], which becomes prohibitively large for realistic 3-D applications (typically,
for a 106 points grid, 10Gb of memory are required for the non-zero coefficients of AMF), and
was therefore not retained.

3. TRANSONIC NOZZLE WITH FLUCTUATING BACK-PRESSURE

3.1. Configuration studied

The time-linearized time-harmonic method is evaluated through comparison with measurements
[81, 82] and with previous time-nonlinear computations [72, 83] in a 3-D nozzle experimentally and
computationally investigated by Ott et al. [82] (Figure 1). The facility, with a width of 40mm, was
equipped with nozzle liners giving a converging-diverging section. The unsteady flow is created
by the rotation of a cylindrical rod of elliptical cross-section (situated 480mm downstream of the
throat), which induces the oscillation of the shock-wave in the divergent section of the nozzle. The
fluctuating back-pressure frequencies can be varied between 0 and 180Hz. Unsteady pressures
were measured by unsteady pressure transducers located on the side-wall, at its intersection with
the y-symmetry plane of the nozzle, and placed 5mm apart, in the shock wave neighbourhood.
Experimental conditions are [81–83]

pti = 168 600 Pa, Tti = 323K, 	yi = 0.5mm, 	zi = 5mm

Tui = 1.6%, �Ti = 0.3mm, 0M̆SW ∼= 1.2
(18)

where 	yi is the boundary-layer thickness at inflow on the nozzle-liners, 	zi the boundary-layer
thickness at inflow on the sidewall, pti the inflow-total-pressure outside the boundary-layers, Tti
the inflow-total-temperature outside the boundary-layers, Tui the turbulence-intensity at inflow, �Ti
the turbulence-length-scale at inflow, and 0M̆SW is the shock-wave Mach-number of the underlying
steady-flow.

For this configuration, the shock-wave position and the post-shock pressure-recovery cannot
be predicted by 2-D computations [82–84]. Indeed, because of the relatively small width of the
nozzle and the rather thick sidewall boundary-layers, only 3-D viscous computations can correctly
predict this flow, where the shock-wave position is dominated by the corner-flow/shock-wave
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(a)

(d)

(g) (h) (i)

(j)

(e) (f)

(b) (c)

Figure 1. Steady RSM–RANS computation [66] wall-pressure-levels, harmonics of measured out-
flow-pressure-signal ( j), and comparison of time-linearized time-harmonic computations for f = 180Hz
(x-wise distributions of amplitude, real, and imaginary part of 1 ˆ̄p, 2 ˆ̄p, and 3 ˆ̄p) with measurements [81, 82]
(pressure-probes indicated by the solid red arrows) and with time-nonlinear RSM–RANS computations [72]

for the Ott et al. [82] nozzle (grid A [72]).
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Table II. Back-pressure harmonics for different frequencies.

Frequency (Hz) |1 p̂o| (Pa) � 1 p̂o |2 p̂o| (Pa) � 2 p̂o |3 p̂o| (Pa) � 3 p̂o

180 1903.201 −60.86◦ 292.55 46.30◦ 107.880 39.25◦
80 2346.173 −130.19◦ 274.69 70.73◦ 89.470 55.99◦
20 2710.683 −18.08◦ 207.16 −30.22◦ 72.022 2.86◦
10 2710.683 −18.08◦ 207.16 −30.22◦ 72.022 2.86◦

interaction [83]. Previous RANS time-nonlinear computations [72, 83], using both 2-equation [83]
and RSM [72] turbulence closures, are in quite satisfactory agreement with measurements. The
computational grids used (121× 57× 49 grid A, 201× 57× 49 grid B, and 201× 111× 91 grid C)
are the same as those used in previous time-nonlinear computations [72, 83], (they are described
in detail in Table III in Chassaing et al. [72]). For all of these grids, the nondimensional distance
of the first grid-point away from the wall is �y+

w
∼= �z+w ∼= 0.5.

3.2. Computational procedure

The time-linearized time-harmonic computations were run with an underlying steady-flow com-
puted by a steady RSM–RANS solver [66] using the WNF–LSS RSM [65]. The boundary condi-
tions were described previously (Equations (18), Appendix C).

At the outflow-boundary location (x = xo = 164mm), the pressure-signal was measured in the
experiment. It can be Fourier-series expanded

p̄(t, xo, y, z) = po(t) = 0 po +
12∑

m=1
[|m p̂o| cos(2�m f t + m
o)] ∀y, z (19)

where 0 po, is the time-mean outflow pressure, |m p̂o| and m
o the amplitudes and phase-angles of
the Fourier-coefficients, and m the harmonic number (12 harmonics were considered [84]). Pro-
cessing the experimental signals for f = 20, 80, 180Hz indicates [84] that the first three harmonics
(m = 1, 2, 3) are sufficient to describe the back-pressure variation (Table II).

Contrary to the time-nonlinear computations [72, 83], where the instantaneous pressure signal
(Equation (19)) is imposed at the outflow boundary, time-harmonic time-linearized computations
can only be run for a single frequency (yielding information only on the 1-harmonic corresponding
to this frequency). Neglecting the nonlinear interactions between harmonics, the time-linearized
computational procedure consists of running three separate computations, one for each of the first
three harmonics (Equation (19)):

w(1)(x, y, z, t) = 0w(x, y, z) + �[1ŵ(x, y, z)ei2� f t ]
w(2)(x, y, z, t) = 0w(x, y, z) + �[2ŵ(x, y, z)ei2�2 f t ]
w(3)(x, y, z, t) = 0w(x, y, z) + �[3ŵ(x, y, z)ei2�3 f t ]

(20)

3.3. Unsteady flow results

3.3.1. Comparison with measurements and time-nonlinear computations. Time-linearized time-
harmonic computational results are compared with previous time-nonlinear computations [72] and
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(a)

(e) (f) (g) (h)

(b) (c) (d)

Figure 2. Steady RSM–RANS computation [66] x-wise distributions of wall-isentropic-Mach-number 0M̆is
and comparison of time-linearized time-harmonic computations for f = 180Hz (x-wise distributions of
|1 ˆ̄p|) with time-nonlinear RSM–RANS computations [72] at the corner-lines of the computational domain

of the Ott et al. [82] nozzle (grid A [72]).

with measurements [81, 82] (Figures 1–3). The present time-linearized scheme is obtained by the
linearization of the previously used time-nonlinear method [72], the only difference being that the
RSM-transport equations were not linearized, but were replaced by the frozen-turbulence-scales
assumption instead (cf. Appendix A). Therefore, eventual differences between the time-nonlinear
and the time-linearized results can be attributed to either the linearization itself, or to the fact that
the turbulence transport equations were not linearized.

For a back-pressure fluctuation-frequency f = 180Hz, corresponding to a Strouhal number
Sr� = f �/ui = 0.192 (where � = 133mm is the nozzle bump length, ui is the inflow velocity), the
computed x-wise distribution of 1 ˆ̄p is in very good agreement with both measurements [81, 82]
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(a) (b)

(d)(c)

(e) (f)

Figure 3. Comparison of time-linearized time-harmonic computations for f = 10, 20 and 80Hz
(x-wise distributions and wall-levels of �[1 ˆ̄p] and �[1 ˆ̄p]) with measurements [81, 82] (pressure
probes indicated by the solid red arrows) and with time-nonlinear RSM–RANS computations [72]
for the Ott et al. [82] nozzle (grid A [72]; notice that the plot-ranges are automatic and that

measurements were not available for f = 10Hz).
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and time-nonlinear [72] results (Figure 1(a)–(c)), both in amplitude and phase. The peak of |1 ˆ̄p|
at the shock-wave predicted by the time-linearized computations is systematically higher than
in the time-nonlinear predictions (Figure 1(a)), corroborating previous results [22, 57] suggesting
that the time-linearized method corresponds to the limit of vanishing amplitude of the time-
nonlinear scheme (scaled by the back-pressure amplitude). The x-wise distributions of 2 ˆ̄p are
correctly predicted (Figure 1(d)–(f)), except at the shock-wave location, especially for the real
and imaginary part (Figure 1(e) and (f)), where nonlinearities are important (the time-nonlinear
computations were run for the complete back-pressure-signal, so that they include the nonlinear
interactions between harmonics, contrary to the time-linearized method). The same remarks hold
for 3 ˆ̄p (Figure 1(g)– (i)), although the amplitude is not correctly predicted, even in the nonlinear
computations, probably because of insufficient grid-resolution, but also because the amplitude
decreases with increasing harmonic number m (Figure 1(j); notice that the scale of the plots is
different for different harmonics).

Quite satisfactory agreement is observed in the x-wise distributions of |1 ˆ̄p| at the corner-
lines of the computational domain (Figure 2), between the time-linearized and the time-nonlinear
computations. Nevertheless, discrepancies are observed at the shock-wave location, on the solid
corner-line at the intersection between the lower-wall and the sidewall (Figure 2(f)). The failure of
the time-linearized approach to correctly reproduce the second |1 ˆ̄p|-peak (Figure 2(f)) is attributed
to the complex phenomena related to the corner recirculation bubble, combining nonlinear effects
and high turbulence levels [82] (the complete linearization of the RSM-transport equations might
improve the agreement with the time-nonlinear results).

Examination of the results for back-pressure fluctuation-frequencies f = 10Hz (Sr� = 0.006),
f = 20Hz (Sr� = 0.0121) and f = 80Hz (Sr� = 0.0485) yields similar conclusions as for f =
180 Hz (Figure 3). For all of the frequencies studied (Figures 1, 3), the imposed pressure-fluctuation
propagation up to the shock-wave, and the amplitude-peak produced by their interaction, are quite
well predicted, both by the time-linearized and by the time-nonlinear computations. As the flow
upstream of the shock-wave is supersonic, there is no noticeable pressure-disturbance propagating
further upstream (Figures 1 and 3). The computation at f = 10 Hz (Sr� = 0.006), for which
no experimental data were available, was included as a comparison between the time-linearized
and the time-nonlinear methods, because it was observed that the discrepancy between the time-
linearized and the time-nonlinear results increases as f decreases from 180 to 20Hz (Figures 1–3).
In the absence of experimental data, the same back-pressure-signal was used for f = 10Hz as for
f = 20Hz (Table II). With this same outflow-pressure forcing, the difference between the time-
linearized and the time-nonlinear results increases (Figure 3). This is attributed to the fact that,
for a given back-pressure fluctuation amplitude, the shock-wave excursion becomes larger as the
frequency decreases, so that the pressure-amplitude peak at the shock-wave foot becomes larger
and less sharp, while the time-linearized computation cannot reproduce this effect (it reproduces
the pressure-fluctuations corresponding to the limit of negligibly small amplitudes, and correctly
predicts the pressure-integrals, i.e. the global forces, but not the flow details in the vicinity of the
shock-wave).

3.3.2. Grid refinement study. Grid-convergence of the time-linearized computations was studied
(for f = 180Hz), by refining the original 0.34× 106 points grid (121× 57× 49 grid A [72])
either in the x-wise direction only (0.56× 106 points 201× 57× 49 grid B [72]) or in all three
directions (2.03× 106 points 201× 111× 91 grid C [72]). Comparison of x-wise distributions of
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(a)

(c)

(b)

Figure 4. Convergence-histories (c; eŵ vs CPU-h, for 2 Gflops sustained performance) of time-linearized
time-harmonic computations using three different grids [72] (121× 57× 49 grid A, 201× 57× 49 grid B,
and 201× 111× 91 grid C) for f = 180 Hz, and comparison (a, b) of computed x-wise distributions
of |1 ˆ̄p| at the intersection between the sidewall and the y-symmetry plane (line [B − B ′] in Figure 2)
and at the solid corner (line [A − A′] in Figure 2) with measurements [81, 82] and with time-nonlinear

RSM–RANS computations [72] (grid A [72]) for the Ott et al. [82] nozzle.

|1 ˆ̄p| at the experimental pressure-transducers location (Figure 4(a)) shows how the amplitude-peak
at the shock-wave becomes higher and narrower, as the grid is refined in the x-wise direction
(cf. Lindquist and Giles [22]). The same behaviour is observed at the solid corner (Figure 4b).

The convergence of the computations is monitored by the error-L2-norm (Figure 4(c))

eŵ = log10

(
‖(n+1)[1ŵ] − (n)[1ŵ]‖2

‖(n)[1ŵ]‖2

)
(21)

The computational time required for a reduction by three orders-of-magnitude of the residuals
(Figure 4(c)) is 2 CPU-h for grid A, 2.5 CPU-h for grid B and 15 CPU-h for grid C (∼ 2 Gflops
sustained performance).

3.3.3. Pressure-integral per unit amplitude. As explained by Lindquist and Giles [22], for flows
with shock-waves, the shock-capturing time-linearized analysis correctly predicts the shock-loads at
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Table III. Comparison of wall-pressure-loads between the time-linearized (TL) and the time-nonlinear
(TNL) methods for various grids (Ni × N j × Nk) and back-pressure fluctuation-frequencies.

Frequency 180Hz 80Hz 20Hz 10Hz

Grid 121× 57× 49 201× 57× 49 201× 111× 91 121× 57× 49 121× 57× 49 121× 57× 49
|1Ĉy | TNL 0.6677 0.6698 — 0.8482 0.9149 0.9879
|1Ĉy | TL 0.6394 0.6683 0.6598 0.8462 0.9804 1.0403
|1Ĉz | TNL 0.6654 0.6698 — 0.8475 0.9119 0.9893
|1Ĉz | TL 0.6384 0.6609 0.6528 0.8594 0.9822 1.0478

the wall (for small amplitudes), but not the exact details of the shock-wave motion. This capability
makes the time-linearized shock-capturing analysis suitable for providing unsteady aerodynamic
response information such as aerodynamic damping. It is therefore important to examine the
unsteady loads on the solid walls

1Ĉy =
[∫ 1

0

∫ 1

0

1 ˆ̄p(x, y, z)
|1 ˆ̄po|

d

(
x − xi
xo − xi

)
d

(
y − yi
yo − yi

)]
z=0

(22)

1Ĉz =
[∫ 1

0

∫ 1

0

1 ˆ̄p(x, y, z)
|1 ˆ̄po|

d

(
x − xi
xo − xi

)
d

(
z − zi
zo − zi

)]
y=0

(23)

where 1Ĉy and 1Ĉz denote the 1-harmonic pressure-loads on the walls perpendicular to y and z
respectively, |1 ˆ̄po| is the amplitude of the 1-harmonic of pressure at outflow, and the subscripts i
and o denote values at inflow and outflow, respectively.

Comparison of time-linearized and time-nonlinear results, for f = 10, 20, 80, 180Hz on various
computational grids (Table III), shows very good agreement between the two methods and between
various computational grids (differences less than 2%), with the exception of the lower frequencies
( f = 10, 20Hz), for which nonlinear effects appear to be more pronounced (differences of ∼ 7%;
Table III).

3.3.4. Computational-time requirements. The main interest in the use of time-linearized methods
for unsteady aerodynamics is the potential gain in computing-time [18, 29]. The corresponding
time-nonlinear method considered in the present work [72], is based on a very efficient dual-
time-stepping technique with implicit subiterations, in which the number of instants-per-period
is fixed by the user, and the number of subiterations is dynamically adjusted at each iteration to
attain a given increment-convergence-tolerance rMF. For the present problem, the simulation of
NP ∈ [3, 4] periods, with NPP = 360 instants-per-period (requiring Mit ∈ [10, 30] subiterations per
iteration with rMF =−1.5), is sufficient for achieving periodic convergence with the time-nonlinear
solver [72]. Because NPP is user-defined, and independent of the fluctuation frequency (Table IV),
the computational-time of the time-nonlinear method does not scale as f −1, but increases much
slower as f −→ 0 (Table IV). This is therefore a rather stringent test for the performance of the
time-linearized method (notice that for different test cases, such as compressor-blade flutter [4]
or rotor/stator interaction [85], a much higher number of periods must be simulated to reach
periodic convergence). In comparing computing times (Table IV), NP ∈ [3, 4] (as applicable to
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Table IV. Computational-time requirements of the time-linearized and the time-nonlinear
solvers (2Gflops sustained performance).

Frequency CPU-cost CPU-time Memory
Computation Grid (Ni × N j × Nk) (Hz) (s/it) Iterations (h) (Mb)

Time-nonlinear 121× 57× 49 180 36 3× 360 10.8 685
Time-nonlinear 121× 57× 49 80 39 3× 360 11.4 685
Time-nonlinear 121× 57× 49 20 55 3× 360 16.5 685
Time-nonlinear 121× 57× 49 10 66 4× 360 26.3 685
Time-nonlinear 201× 57× 49 180 57 3× 360 17.1 980

Time-linearized 121× 57× 49 180 2.6 2500 1.8 416
Time-linearized 121× 57× 49 80 2.5 2500 1.8 416
Time-linearized 121× 57× 49 20 2.6 2500 1.9 416
Time-linearized 121× 57× 49 10 2.6 2500 1.9 416
Time-linearized 201× 57× 49 180 4.2 2500 2.9 656
Time-linearized 201× 101× 91 180 15.5 3500 15.1 2256

obtain periodic convergence of results) was used for the time-nonlinear computations, while the
time-linearized calculations were run until convergence of the wall-pressure-loads (Equations
(22, 23)). Notice that for the time-nonlinear computations, for the f = 10Hz case, the simulation
of one more period (NP = 4 instead of NP = 3) was necessary to achieve convergence of the
unsteady signals, while the convergence of the corresponding time-linearized computations was
not significantly influenced by the change in frequency. An average speed-up of ∼ 10 is obtained
using the time-linearized method.

4. STABILITY AND ROBUSTNESS

Refining the computational grid in recirculating flow regions (shock-wave/corner-boundary-layers
interaction region), using the pseudo-time-marching integration technique, may lead to instability
of the iterative procedure, with the perturbation variables growing continuously in pseudo-time.
This is associated with the pseudo-time-marching iterative technique used (cf. Section 2.6). In a
recent paper, Agarwal et al. [54] have shown that the linearized Euler equations contain instabilities
associated with a given range of frequencies, depending on the unperturbed (time-averaged) flow.
These instabilities will be reproduced in the pseudo-time-marching procedure. These authors [54]
have in particular shown that these instabilities will not contaminate the solution if a direct (not
pseudo-time-marching) solver is used. This has been verified using a 2-D version of the present
method, with direct unfactored LU inversion of the linear system (which does not present instability
problems, in agreement with the results of Rao and Morris [36]).

As work on time-linearized approaches focuses on the prediction of unsteady flows with strong
viscous effects (separated flows) [24, 29, 31, 42, 58, 61], encounters with instability become more
frequent. For a given configuration, the appearance of instability depends on the grid refine-
ment [59], on the dissipative properties of the scheme [59], or on the time-linearization of the
turbulence model [42]. For a given configuration which contains unstable modes, numerical insta-
bility is enhanced as the grid is refined [59], as the numerical dissipation decreases [59], or when
the unsteady behaviour of turbulence is neglected [42].
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Campobasso and Giles [34, 35] have demonstrated the presence of unstable modes in the lin-
earized Navier–Stokes equations, and have developed an implicit pseudo-time-marching technique
where the pseudo-time-advancement linear system solution, at each pseudo-time iteration, is based
on a GMRES [41, 46] approach or on a RPM [47] procedure to filter out the transient iterative
instabilities.

A different approach, which has been successfully applied to the stabilization of the computation
of a 2-D transonic nozzle flow response to a pressure impulse imposed at outflow [55], is to solve the
linear system using a non-time-marching restarted-GMRES [41] procedure. The instability problem
encountered in Chassaing et al. [55], appeared for the Délery B nozzle [86], computed with the
GV-RSM [68], on a 301× 201 grid. The restarted-GMRES, with ILU0 preconditioning [41], used a
basis of 400 (800) vectors with 12 (2) restarts. This methodology should be preferred for robustness,
instead of the time-marching methods used in the present work.

5. CONCLUSIONS

In the present work an upwind finite-volume numerical method with shock-capturing capability
was developed for the time-linearized time-harmonic Reynolds-averaged Navier–Stokes equations.
The convective numerical fluxes are obtained from the linearization of the nonlinear van Leer
flux-vector-splitting scheme. A conservative variables reconstruction technique with frozen slope
limiters (computed using the underlying steady flow only) is used to achieve O(�x3H) accuracy.
A straightforward linearization of the viscous fluxes, with an O(�x2H) centred scheme is used.
A very simple frozen-turbulence-scales assumption was used for the unsteady turbulent stresses
(the underlying steady flow is obtained using an RSM closure) as a baseline model to validate the
numerical method.

The solution of the resulting linear system is obtained using an implicit pseudo-time-marching
technique with ADI-AF factorization. When the underlying steady flow contains unstable modes,
the pseudo-time-marching technique may develop numerical instabilities. This problem is best
solved by using non-pseudo-time-marching techniques to solve the linear system (this is the
subject of ongoing research).

Time-linearized results are compared with experimental measurements and with time-nonlinear
computations for a transonic nozzle, in which back-pressure fluctuation induces the oscillation of
the 3-D shock-wave present in the divergent section of the nozzle, for frequencies f ∈ [10, 180]Hz.
The agreement between time-nonlinear, time-linearized and experimental results is quite satisfac-
tory. Discrepancies are observed locally at the shock-wave, where nonlinear interactions between
harmonics (present in the experiment and simulated by the time-nonlinear method) cannot be taken
into account by the time-linearized method. The time-linearized method also fails to reproduce
the double shock-wave amplitude-peak, observed in the time-nonlinear results, at the solid corner
between the lower-wall and the sidewall. This is attributed to the very simple assumption used for
the unsteady part of the turbulent stresses, and to the nonlinearities associated with the complex
secondary flows present at this location. Most importantly, the time-linearized method accurately
predicts the aerodynamic loads on the solid walls, being faster by a factor ∼ 10 compared to the
time-nonlinear solver.

Future work on the time-linearized method should concentrate (1) on the use of non-pseudo-
time-marching solvers of the nonlinear system (suppression of numerical instabilities associated
with the pseudo-time-marching technique), (2) on the multigrid convergence acceleration of the
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time-linearized computations, and (3) on the linearization of the RSM-transport equations to
improve upon the present oversimplified frozen-turbulence assumption, especially in regions with
strong secondary flows.

APPENDIX A: SIMPLIFIED PERTURBATIONS OF TURBULENT STRESSES
AND HEAT-FLUXES

The thermodynamics of the working gas are approximated by [68]

p̄ = �̄RgT̃ = �̄
� − 1

�
h̃, 
̆= 
(T̃ ) = 
273

T̃ 3/2

273.153/2
TS + 273.15

TS + T̃

�̆ = �(T̃ ) = �273

(T̃ )


273
[1 + A�(T̃ − 273.15)]

(A1)

where � is the isentropic exponent, Rg is the gas-constant, 
 is the dynamic viscosity, and
� is the heat conductivity. For air Rg=287.04m2 s−2 K−1, �=1.4, 
273=17.11×10−6 Pa s, �273=
0.0242Wm−1 K−1, TS = 110.4K, and A� = 0.00023K−1.

The unsteady perturbations of the viscous fluxes and of the source-terms, for the meanflow-
variables equations, read

1 F̂
V
MF�

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1 ˆ̄�x�+1 ˆ̄�uu�

−1 ˆ̄�y�+1 ˆ̄�vu�

−1 ˆ̄�z�+1 ˆ̄�wu�

−0ui (
1 ˆ̄�i�−1 ˆ̄�ui u�

)−1 ˆ̃ui (0�̄i�−0�̄ui u�
)+(1 ˆ̄q�+1 ˆ̄qhu�

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 1 ŜMF=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−1 Ŝh̆t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A2)

where F̂
V
MF�

∈ R5 are the viscous fluxes in the mean-flow equations, ŜMF are the source-terms in

the mean-flow equations, �̄i j are the viscous stresses, �̄ui u j = �̄˜u′′
i u

′′
j are the Reynolds-stresses, q̄i

is the molecular heat-flux, q̄hui = �̄˜h′′u′′
i is the turbulent heat-flux, Sh̆t = −(Pk − �̄�+ p′�u′′

�/�x�)+
�[pu′′

� ]/�x� + (− p̄	i� + �̄i�)�u′′
i /�x� is the source term in the mean-flow energy-equation [68],

Pk = 1
2 P�� is the turbulence kinetic energy production (equal to the trace of the Reynolds-stresses

production tensor Pi j ), and � its dissipation. Notice that in the last member of the vector 1 F̂
V
MF�

(Equation (A2)) the summation convention is observed on the index i (e.g. 1 ˆ̃ui 0�̄i� = 1 ˆ̃u0�̄x�+
1 ˆ̃v0�̄x�+1 ˆ̃w0�̄x�). The harmonics of the primitive variables v are directly related to the harmonics
of the conservative variables

1v̂ =
[

�v

�w
(0v)

]
1ŵ, v = [�̄, ũ, ṽ, w̃, p̄]T (A3)

where the Jacobian matrix �v/�w is given, e.g. in Warming et al. [87].
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The unsteady perturbations of the Reynolds-stresses and of the turbulent-heat-flux are modelled
using only steady quantities and mean-flow-perturbations

1 ˆ̄�ui u j = 1 ˆ̄�ui u j (
0w, grad 0w, 1ŵMF, grad

1ŵMF) (A4)

1 ˆ̄qhui = 1 ˆ̄qhui (0w, grad 0w, 1ŵMF, grad
1ŵMF) (A5)

These assumptions require a specific approximation for the unsteady perturbations of the
Reynolds-stresses, which is not consistent with the linearization of the transport-equations used in
the steady flow model (Equation (1)). In the present work, we have used a very simple approx-
imation, in which (1) a Boussinesq tensorial relation [63] for the unsteady perturbations of the

Reynolds-stresses is used, (2) the unsteady perturbations of the turbulent kinetic-energy k = 1
2

˜u′′
i u

′′
i

and of the turbulence Reynolds-number Re∗
T = k2�̆−1�∗−1

are neglected, and (3) the unsteady
perturbations of the source-term in the energy equation are neglected

1k̂ ∼= 0, 1 R̂e∗
T

∼= 0, 1 Ŝh̆t
∼= 0 (A6)

With these assumptions, the unsteady perturbations of the equivalent (molecular + turbulent)
stresses and heat-fluxes read

1 ˆ̄�i j − 1 ˆ̄�ui u j = (1 ˆ̆
 + 1
̂T)

(
� 0ũi
�x j

+ � 0ũ j

�xi
− 2

3

� 0ũ�

�x�

	i j

)

+ (0
̆ + 0
T)

(
� 1 ˆ̃ui
�x j

+ � 1 ˆ̃u j

�xi
− 2

3

� 1 ˆ̃u�

�x�

	i j

)
− 2

3
1 ˆ̄�0k (A7)

1 ˆ̄qi + 1 ˆ̄qhui = − (0� + 0�T)
� 1 ˆ̃T
�xi

− (1�̂ + 1�̂T)
� 0T̃

�xi
(A8)

with

0
T = 0C

0
̆ 0Re∗

T, 0C
 = 0.09e−3.4/(1+0.02 0Re∗
T)2, 0Re∗

T =
0�̄ 0k2

0
̆ 0�∗
(A9)

1
̂T = 0C

0Re∗

T
1 ˆ̆
, 0�T =

0
Tcp
PrT

, 1�̂T = cp
PrT

1
̂T, cp = �

� − 1
Rg (A10)

where cp is the heat capacity at constant pressure, and PrT is the turbulent Prandtl number (for air
PrT = 0.9 is used to obtain the correct recovery temperature for turbulent flow over an adiabatic
wall [88]). The unsteady perturbations of 
̆ and �̆ are obtained by straightforward differentiation
of Equation (A1)

1 ˆ̆
= 0
̆

(
3

20T̃
− 1

TS + 0T̃

)
1 ˆ̃T , 1 ˆ̆� =

0�̆
0
̆

1 ˆ̆
 + �273

273

0
̆A�
1 ˆ̆T (A11)

Space-derivatives (Equations (A2), (A4), (A5), (A7) and (A8)) are computed using an O(�x2H)

discretization [73].
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Obviously, this oversimplified frozen-turbulence-scales approximation should be considered as
a baseline model used to test the numerical methodology, and further research on a physically
representative 0-equation model for the unsteady perturbations of the Reynolds-stresses is needed.

APPENDIX B: MUSCL INTERPOLATION

If wp is an element of wMF =[wp; p= 1, . . . , 5]T then the elements of the corresponding van
Albada limiter sMF =[sp; p= 1, . . . , 5]T are defined by [48]

sp([wp]−1, [wp]0, [wp]+1)

= 2([wp]+1 − [wp]0) ([wp]0 − [wp]−1) + 10−23

([wp]+1 − [wp]0)2 + ([wp]0 − [wp]−1)2 + 10−23
, p=1, . . . , 5 (B1)

where the 10−23 term is introduced to avoid division by 0, and the elements of the corresponding
MUSCL interpolation function

w±
MF([wMF]−1, [wMF]0, [wMF]+1; sMF) =[w±

p ; p= 1, . . . , 5]T (B2)

are given by [48]
w±

p ([wp]−1, [wp]0, [wp]+1) = [wp]0 ∓
[ sp
4

(
1 ∓ sp

3

)
([wp]+1 − [wp]0)

+sp
4

(
1 ± sp

3

)
([wp]0 − [wp]−1)

]
(B3)

Using the above symbolism, and neglecting the unsteady perturbations of the limiter sMF the
unsteady perturbations of the MUSCL variables are given by

[1ŵ±
MF]i−1/2, j,k =w±

MF([1ŵMF]i−3/2±1/2, j,k, [1ŵMF]i−1/2±1/2, j,k, [1ŵMF]i+1/2±1/2, j,k; 0sMF)

[1ŵ±
MF]i, j−1/2,k =w±

MF([1ŵMF]i, j−3/2±1/2,k, [1ŵMF]i, j−1/2±1/2,k, [1ŵMF]i, j+1/2±1/2,k; 0sMF)

[1ŵ±
MF]i, j,k−1/2 =w±

MF([1ŵMF]i, j,k−3/2±1/2, [1ŵMF]i, j,k−1/2±1/2, [1ŵMF]i, j,k+1/2±1/2; 0sMF)

(B4)

APPENDIX C: BOUNDARY CONDITIONS FOR THE NOZZLE PROBLEM

The computations presented in the present paper concern a transonic nozzle with fluctuating
back-pressure. Because of the geometrical symmetry of the configuration, only 1

4 of the nozzle
was discretized (Figure 1). Let n denote the unit-normal at the boundary, with direction cosines
[nx , ny, nz]T. At the y-wise and z-wise symmetry planes symmetry conditions were applied

� 1ŵ

�n
= 0, 1 ˆ̃uini = 0 (C1)
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where n is the unit-normal to the symmetry-plane. Adiabatic wall conditions were applied at the
solid walls

1 ˆ̃u = 0, 1 ˆ̃v = 0, 1 ˆ̃w = 0,
� 1 ˆ̄p
�n

= 0,
� 1 ˆ̃T
�n

= 0 (C2)

At outflow (·)o the pressure harmonic is fixed at a given value 1 ˆ̄po, and the other variables are
extrapolated

1 ˆ̄p= 1 ˆ̄po,
� 1�̄

�n
= 0,

� 1(̂̄�ũ)

�n
= 0,

� 1(̂̄�ṽ)

�n
= 0,

� 1(̂̄�w̃)

�n
= 0 (C3)

At the inflow-boundary, a linearized form of the 1-D nonreflecting condition of Hedstrom [89] is
applied, which for the present case can be summarized as [90]

1 ˆ̄p + 0�̄ 0a 1 ˆ̃u = 0, 1 ˆ̄p − 0a2 1 ˆ̄� = 0, 1 ˆ̃v = 0

1 ˆ̃w = 0, 1 ˆ̄p − 0�̄ 0a 1 ˆ̃u =[1 ˆ̄p]SCH − 0�̄ 0a [1 ˆ̃u]SCH
(C4)

where the superscript [·]SCH denotes variables computed from the numerical scheme, prior to the
application of boundary-conditions.
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84. Gerolymos GA, Bréus JP. Computation of unsteady nozzle flow resulting from fluctuating back-pressure using
Euler equations. Aerospace Science and Technology 1998; 2:228–236.

85. Gerolymos GA, Neubauer J, Michon GJ. Analysis and application of chorochronic periodicity for turbomachinery
rotor/stator interaction computations. Journal of Propulsion and Power 2002; 18:1139–1152.

86. Délery JM. Experimental investigation of turbulence properties in transonic shock/boundary-layer interactions.
AIAA Journal 1983; 21:180–185 (also AIAA Paper 81-1245, 1981).

87. Warming RF, Beam RM, Hyett BJ. Diagonalization and simultaneous symmetrization of the gas-dynamic matrices.
Mathematics of Computation 1975; 29:53–72.

88. Smits AJ, Dussauge JP. Turbulent Shear Layers in Supersonic Flow. AIP Press: Woodbury, NY, ISBN 1-56396-
260-8.

89. Hedstrom GW. Nonreflecting boundary conditions for nonlinear hyperbolic systems. Journal of Computational
Physics 1979; 30:222–237.

90. Chassaing JC, Gerolymos GA. Time-domain implementation of nonreflecting boundary-conditions for the nonlinear
Euler equations. Applied Mathematical Modelling 2007; 31:2172–2188.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:279–303
DOI: 10.1002/fld


